
Connecting an ASP.NET-form to a database 
Connecting an ASP.NET form created with SpreadsheetConverter to a database is very 

easy. We will do it in 3 steps: 

1. Calculate and save the form contents into a database. 

2. Retrieve previous entered data from the database, show it in the form and let the 

user edit it and recalculated and save it again. 

3. Show all submitted entries so that we can click on them to edit them. 

 

You can read the 1st part here.  

Part 2: Presenting and updating data in the form 
Filling the form with data from the database is almost as easy as saving the data. The only 

complication is that there must be a way to tell the ASP.NET-from which entry to 

display. We have chosen the standard solution where each entry has a unique that is used 

to find the entry. 

Design 

Each entry in the database as a unique serial number column, called serialno. The 

database automatically fills in this column.  

The normal url to our ASP.NET-form is http://localhost/FillFromDB/time_report.aspx. 

When the web page is called the first time, it returns an empty form, when the web page 

is called after that, the calculated fields are automatically recalculated. 

In order to handle updating of old data from the database, we add a HTTP Query 

Parameter to the url, which tells which row in the database to edit. The url with the query 

parameter will look like http://localhost/FillFromDB/time_report.aspx?serialno=14  

If the contents of the form is read from the database, we do not want to add a new record 

to the database when the user presses Save/Submit button. 

Whenever the user wants to save the form, we look at the querystring for serialno. If it is 

there, then we should update an existing row in the database. It serialno is not set, then 

this is a new row and we insert the data into the database. 

 

 

save-asp-net-to-database-14.htm
open-excel-everywhere-form-from-datagrid-34.htm
save-asp-net-to-database-14.htm
http://localhost/FillFromDB/time_report.aspx
http://localhost/FillFromDB/time_report.aspx?serialno=14


Postback?
Read data from

form

Serialno part of

url?

Update form from

database

Read data from

form

Calculate

Update form

Submit button

pressed?

Page_Load event

Finished

Yes

No

Yes

No

Yes

No

Serialno part of

form?

Insert new record

into database

Update existing

record in database
Yes

No

 
 

SQL-statement for finding an old time report. 

As described in part 1, we should always use parameterized SQL-statements. The 

structure of the SELECT-statement, which is the one that reads an old entry is 
select * from arrival Where serialno = @serialno 

SQL-statement for updating an old time report 

The structure of the UPDATE statement which replaces the old values of arrival, 

departure, hours, name,today2... with new values is: 



Update Arrival Set 

name=@name,today2=@today2,arrival=@arrival,departure=@departure,lunch=@

lunch,experience=@experience,hours=@hours where serialno=@serialno 

SQL-statement for inserting a new time report 

The structure of the INSERT statement hasn’t changed. Note that serialno is not 

mentioned. The database handler will set that column automatically, since it is an identity 

type. 
Insert into 

Arrival(name,today2,arrival,departure,lunch,experience,Hours) 

values(@Name,@Today2,@Arival,@Departure,@Lunch,@Experience,@Hours) 

Displaying values to different controls 

To display values to different controls, we have declared global variable (outside 

method), like below  
  // variable declaration equivalent to the columns 

        string name = string.Empty; 

        string today2 = string.Empty; 

        int arrival; 

        int departure; 

        int lunch; 

        int experience; 

        int hours; 

 

& will be using them to display values to different html elements using asp.net inline 

expression “<%=inline expression %>”. Search each element tag & place the appropriate 

attributes. 

 

1) For Input(TextBox) control having name ”name” :  

Set the value using value='<%= name %>' as 
<input value='<%= name %>' ../>  

2) For Calendar control having name ”today2” :  

Set the value using value='<%= today2 %>' 

3) For Drop down control having name ”arrival”: 

For drop down control we can’t use value attribute directly. We have a 

helper method named "string GetDropDownHelper(string 

currentValue, string selectedValue)”  

and will be using to display selected value for the select element. This 

method accepts first parameter as the current value of the option element 

and second value is the value retrivied  

from database to be selected in drop down control & finally returns 

”selected” if they matches. So associate each option element with 

GetDropDownHelper as below: 

 
<select name='arrival' id='arrival' class='ee102' 

style='width: 100%' tabindex='3' 

        

onchange="recalc_onclick('arrival')" size='1'> 

  <option value='1' <%= 

GetDropDownHelper("1",arrival.ToString())  %> >1</option> 



    <option value='2' <%= 

GetDropDownHelper("2",arrival.ToString())  %> >2</option> 

     <option value='3' <%= 

GetDropDownHelper("3",arrival.ToString())  %> >3</option> 

     <option value='4' <%= 

GetDropDownHelper("4",arrival.ToString())  %> >4</option> 

     <option value='5' <%= 

GetDropDownHelper("5",arrival.ToString())  %> >5</option> 

   </select> 

 

4) For Slider control having name ”departure”:  

Set the value using value='<%= departure %>' 

 

5) For Radio buttons control having name ”lunch”: 

For this control also, there is a helper method named ”string 
GetRadioButtonHelper(string currentValue, string 

selectedValue)” which compares the current element value with the 

value retrived from database & returns ”checked='checked'” for the 

matched value. First remove the ”checked='checked'” from the first 

input & associate each input with "GetRadioButtonHelper” as 

below: 

 
      <input style="vertical-align: middle;" type='radio' 
id='lunch$1' name='lunch' value='1' 

           onclick='recalc_onclick(lunch$1)' <%= 

GetRadioButtonHelper("1",lunch.ToString()) %> /> 

    
   <input style="vertical-align: middle;" <%= 

GetRadioButtonHelper("2",lunch.ToString()) %> 

           type='radio' id='lunch$2' name='lunch' value='2' 

onclick='recalc_onclick(lunch$2)' /> 

 

Place this for all the input element having name ”lunch”. 

 

6) For Rating control having name ”experience”: 

For this control we will need to use some javascript code to display 

the selected value. So place the code 
<script type="text/javascript"> 

    $(document).ready( 

        function() { 

            SetRatingStart('<%= experience %>', 5, 

'experience', 'StarA'); 

            recalc_onclick('experience') 

        } 

    );                                 

</script> 

 

just above the rating element. We are calling the javascript 

function named ”SetRatingStart” that will be called while 

selecting/clicking some rating value. It accepts value to be selected 

as first parameter(we are setting this value as <%= experience 



%>) , total number of rating as second parameter, name of input 

element to be passed to server as third element & the initial name 

of span element in the rating group.  

 

The structure of the INSERT statement hasn’t changed. Note that serialno is not 

mentioned. The database handler will set that column automatically, since it is an identity 

type. 

 

The complete server-side-code 

The complete source code is a bit long. Click here to view it. 

 

 
 

Note: Remember to change the variable “connStr” with appropriate values to point to 

the database created in step1. 

Testing updating an old value 

I looked into my database and saw that I had an entry with serialno = 14. 

sql-select-insert-update.htm


The link to edit that row is http://localhost/FillFromDB/time_report.aspx?serialno=14. 

Clicking on that URL, the form opens with 

 

 
 

When changing departure to 18 and pressing save , we get 

 

http://localhost/FillFromDB/time_report.aspx?serialno=14


 
 

Looking into the database, I see that the rows has changed. 

Conclusion 

We added code that reads an old entry, and code that updates an old entry. Although the 

code is rather long, mostly depending on the fact that we have to use parameterized SQL-

statements to get a secure site, it is simple & code to manipulate different controls is little 

tricky. In order to adapt this to your form, all you need to use is cut-and-paste and rename 

the column names. 

Accessing old entries with the URL 

http://localhost/FillFromDB/time_report.aspx?serialno=14 is not very nice, and in the 

next part we will use the GridView to create a clickable list of the existing entries. 

 

http://localhost/FillFromDB/time_report.aspx?serialno=14

